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Abstract: The container depot location problem is usually treated as a cost minimization problem due to 

the impact of container depots on logistic costs. But these depots, that store the returned empty maritime 

containers until they are needed, have also an environmental impact in the areas where they are located. 

In this paper a biobjective model is considered for designing a depots network in a hinterland. The two 

objectives used are the total cost of the network and the environmental impact generated by the 

commissioning and maintenance of the container depots and by the transport operations in and out of the 

depots. As the capacity of a depot is not an exact value, they have been modeled as a fuzzy restriction. 

An additive fuzzy multiobjective optimization approach has been used to solve the problem. Results were 

applied to the case of the Port of Valencia, Spain. 
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

1. INTRODUCTION 

During the last decades maritime container shipping has 

grown considerably. Containers have become a basic tool for 

all maritime logistic operations. Once a ship arrives to port 

and containers are transported to the consignees, the goods 

are unloaded and the empty containers sent to a depot. In the 

depots, the containers are stored until shippers need them to 

export their own goods. As in many regions the amount of 

imports is much greater than that of export it is necessary to 

store the resulting empty containers somewhere. 

There are multiple reasons that require the storage of 

containers (Furió 2005): the number of containers in the 

world doubles the total capacity of ships; the import and 

export operations are not balanced; the variability in the 

contents of the containers and the difficulty of the 

coincidence in time and place of the offer and the demand. 

Since container terminal storage capacity is limited and 

expensive other facilities are required for container storage. 

Also containers require some intermediate operations after 

they are unloaded by the consignees until a shipper requests 

them for shipping their own products. 

Container depots are generally large facilities in the vicinity 

of ports and are divided in different zones in which different 

activities are performed, e.g. the reparation zone; the cleaning 

zone; the storage zone. The activities performed in these 

places have an impact in the environment of the area due the 

pollution, noise and other externalities they produce. 

Moreover, the location of a depot involves a large number of 

heavy transport operations. These operations have also an 

environmental impact due to externalities like atmospheric, 

visual and noise pollution, traffic congestion and 

accidentality rate. 

Probably the most important feature of a container depot is its 

capacity. This feature does not depend exclusively on the 

area available. The manipulation technologies used, the 

internal organization of the depot and the stacking height of 

containers are other factors that need to be taken into account. 

In addition to their capacity, an important decision variable is 

where to locate the empty container depots. In this paper, we 

propose a multiobjective approach based on the 

Multicommodity Capacitated Location Problem with 

Balancing Requirements. The goal is not only to minimize 

costs but also to minimize the environmental impact due to 

the setting up and maintenance of the container depots, and to 

the transport operations in and out of these depots. The 

capacity of the depots is considered as a fuzzy constraint and 

a fuzzy optimization approach is used to solve the problem. 

The proposed approach is applied to the case of the 

Valencia’s hinterland 

The organization of this paper is the following: in section 2, a 

brief review of the relevant literature is presented; section 3 

formulates the proposed mathematical model; in section 4, a 

description of the fuzzy multiobjective optimization approach 

used to solve the problem is presented and the results of its 

application applied to Valencia’s hinterland; finally 

concluding remarks are made in section 5. 

2. PREVIOUS WORK 

2.1 Depot location problem 

The Multicommodity Capacitated Location Problem with 

Balancing Requirements (MCLB) was introduced by Crainic 

et al. (1989). This problem arises from the need to store 

empty containers once they are unloaded by the consignees 

until shippers require them to export their own products. 

These authors also introduced capacities at the depots, giving 

the problem a more realistic view. These capacities are an 

estimate of the number of empty containers that a depot can 
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handle. The problem is thus to minimize the total cost which 

includes the cost of opening the depots and the transportation 

costs. Several methods have been used to solve this problem. 

Thus, Crainic et al. (1993) used a branch-and-bound method 

and later a tabu search while Gendron and Crainic (1995) 

used a branch-and-bound algorithm. 

Gendron et al. (2003) showed that large-scale instances of the 

MCLB problem cannot be solved efficiently by mixed-

integer programming solvers. They combined tabu search 

with slope scaling obtaining good solutions in this kind of 

problems. They considered a network G=(N,A) where N 

represents the set of nodes and A the set of arcs. They used 

two types of nodes, customers and depots, and each arc 

determines the existence of commodity flows between nodes. 

The aim of the problem is to minimize the total cost of the 

network satisfying the demand of each node. 

Li et al. (2004) showed that there exists an optimal pair-

critical policy (U, D) for the management of empty 

containers in a port with stochastic demand. That is, if the 

number of empty containers is less than U, then containers 

are imported up to U. Also, if the number of empty container 

is more than D, the containers are exported down to D. In any 

other case, do nothing. They also extended the problem for 

multi-ports applications. 

All these papers consider the depot location problem as a cost 

minimization problem. In this paper, we transform the 

problem into a biobjective optimization problem introducing 

the criterion of minimizing also the environmental impact of 

the depots construction and operation. 

2.2 Analytic Hierarchy Process 

The Analytical Hierarchy Process (AHP) was introduced by 

Thomas L. Saaty in the 70’s. In the AHP methodology the 

decision maker inputs a crisp matrix containing pair-wise 

comparisons between different alternatives. However, many 

times these comparisons have a degree of uncertainty due to 

the difficulty to quantify relations with a precise value (Lee et 

al. 2005) making a fuzzy approach an interesting option. 

As in our case obtaining impact data is a difficult task, we 

decided to use the Fuzzy AHP methodology to take into 

account the degree of uncertainty in the decision makers 

comparisons. Fuzzy AHP has been applied to many decision 

making problems using different techniques (e.g. Chen, 1996, 

Chang 1996, Csutora and Buckley, 2001, Lee et al., 2005, 

etc). Thus, to obtain weights for the alternatives Buckley 

(1985) proposed to extend to fuzzy matrices the geometric 

mean method used with crisp matrices. To determine the 

importance weights for the customer requirements Kwong 

and Bai (2003) used fuzzy AHP with triangular fuzzy 

numbers for the pairwise comparisons. 

2.3 Fuzzy goal programming 

Introducing fuzzy set theory in Goal Programming (GP) was 

first considered by Narasimhan (1980). The main difference 

between fuzzy goal programming (FGP) and GP is that in 

FGP the values for the objectives to achieve are specified in 

an imprecise way. Tiwari et. al. (1987) presented an additive 

(weighted and preemptive) model to solve fuzzy goal 

programming using arithmetic addition to aggregate the fuzzy 

goals. 

Chen et. al. (2001) proposed a model based in the additive 

approach of Tiwari but using lower bound thresholds for the 

goal membership values instead of weights. They also show 

that this additive model obtains better results than the original 

fuzzy optimization approach proposed by Zimmerman 

(1978). They presented a preemptive goal programming 

version too. 

In this paper we propose a biobjective optimization model for 

empty container depots location and solve it using an additive 

fuzzy optimization method. We also used Fuzzy AHP to 

obtain the impact associated with the transport operations and 

the setting up and maintenance of each depot. We used 

LINGO as optimization software. 

3. PROBLEM MODELING 

The model considered in this paper is based in the model 

proposed by Gendron et al. (2003). The main difference is 

that we consider two objective functions instead of one, i.e. 

we include the environmental impact generated by the depots 

as the second objective function. Another difference between 

their model and ours is that we consider three kinds of nodes 

instead of two: we have shippers/consignees (subindex s), 

depots (subindex d) and terminals (subindex t). We also 

consider that any depot or terminal can work with any 

shipper/consignee. The notation used is shown in Table 1. 

Data 

Ist Containers imported by consignee s through 

terminal t every year. 

Est Containers exported by shipper s through terminal t 

every year. 

Kd Flow capacity limit of depot d. 

Kt Flow capacity limit of  terminal t. 

Cd Storage capacity of depot d. 

fd Fixed operation cost of depot d. 

ST

stc  Unit transport cost between shipper/consignee s and 

terminal t. 

SD

sdc  Unit transport cost between shipper/consignee s and 

depot d. 

TD

tdc  Unit transport cost between terminal t and depot d. 

wd Environmental impact per unit flow from/to depot d. 

vd Environmental impact per stored unit in depot d. 

β Relation between depot impact and transport 

impact. 

Variables 
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ST

stx  Container flow from shipper/consignee s to terminal 

t. 

TS

tsx  Container flow from terminal t to shipper/consignee 

s. 

SD

sdx  Container flow from shipper/consignee s to depot d. 

DS

dsx  Container flow from depot d to shipper/consignee s. 

TD

tdx  Container flow from terminal t to depot d. 

DT

dtx  Container flow from depot d to terminal t. 

δd Binary variable that indicates if depot d opens or 

not. 

Table 1. Notation for model data and variables 

The problem can be formulated as: 
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The first objective function is the cost function. It includes 

the cost of maintenance and setting up of the depots and the 

total costs of the transport operations between each 

shipper/consignee, depot and terminal. The second objective 

function is the impact function. It includes the maintenance 

and setting up impact and the transport operations impact. 

The values of parameter β captures whether the transport 

operations impact is more, equal or less important than the 

setting up and maintenance impact of the depot. 

Regarding constraints, (3) assures that the number of 

containers received in a terminal is equal to the number of 

containers that leave same terminal; constraint (4) imposes 

that the number of containers received in a depot is equal to 

the number of containers that leave same depot; constraint (5) 

guarantees that each container imported by a consignee is 

stored in a depot or a terminal; constraint (6) assures that 

each container exported by a shipper is received from a depot 

or a terminal; constraint (7) imposes that the number of 

container movements in a terminal does not exceed the 

container movements capacity of that terminal; constraint (8) 

guarantees that the number of container movements in a 

depot does not exceed the container movements capacity of 

that depot. Note that constraints (8) implicitly consider that 

the total number of container movements in a depot is double 

the number of containers received; this is applied also to the 

objective function (2). 

As, in many cases, the amount of imports is higher than that 

of exports, it can be considered that the surplus of containers 

that arrive to the terminal are exported from the terminal to 

other ports as empty containers. 

The number of variables used in this model is d + 2·(s·t + d·t 

+ s·d) and the total number of constraints is 3d+2·(t + s). 

It is important to note that our model is static so long term it 

should be stable. For this reason, it is supposed that exists a 

balance of the number of containers moving on the network. 

Since we propose to use a fuzzy multiobjective optimization 

approach, constraint (8) may be replaced by two new 

constraints (the first one to soften the constraint by allowing a 

certain tolerance and the second to prohibit movements 

to/from the depot when the depot is not opened): 
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where  determines by how much the capacity of a depot 

could be increased (for instance, τ=1.15 means up to an 

additional 15% container traffic over the nominal capacity 

could be handled by the depot). 

Let us call f1(x,) and f2(x,) respectively the two objective 

functions (1) and (2). For i={1,2} let be iz  the optimal 

objective function value of the model min fi(x,) s.t. (3)-(7), 
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(8’’), (9); and, analogously, let be iz the optimal objective 

function value of the model max fi(x,) s.t. (3)-(7), (8’’), (9). 

Now consider the following fuzzy multiobjective 

optimization (FMO) model in which the cost membership 

function 1 and the environmental impact membership 

function 2 have the same importance. 
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Constraints (3)-(7), (8’’), (9) 

]1,0[, di                                                                     (13)  

where gd(x,δ) is the left hand side of constraint (8’). The 

optimal solution (x*, δ*) has an associated cost f1(x*,δ*) and 

an environmental impact f2(x*,δ*). With these values we 

solve again the above model changing its objective function 

to 
d

dmax , removing constraints (11) replacing them by 

new constraints imposing that the values of the total cost and 

environmental impact cannot be worse than f1(x*,δ*) and 

f2(x*,δ*) respectively. The solution to this second 

optimization model is the final solution obtained. 

Apart from this, the model can be solved using a certain 

value  as lower bound on the membership functions i. 

Varying α different solutions can be obtained.  

4.  APPLICATION TO HINTERLAND OF VALENCIA 

The Port of Valencia (Spain) is the biggest Spanish port in 

the Mediterranean Sea, with an important volume of maritime 

container traffic. Due to this, we have considered the 

hinterland of Valencia as our application case. We have used 

a sample of the largest 357 shippers/consignees in the area. 

The hinterland of Valencia currently has eight depots open in 

the regions of Valencia and Murcia regions with different 

(between 50,000 and 125,000 container movements per year) 

flow capacities. In addition to these eight depots and taking 

into account the location of the shippers/consignees 

considered we have considered eleven new potential 

locations for a new depot (see Figure 1). 

The flow capacity of these potential locations is 95,000 

movements of containers per year. The estimation for the 

fixed cost of a depot is about 1,000,000€ for a depot 

processing about 250,000 container movements per year. For 

a depot with 95,000 container movements per year the fixed 

cost is assumed to be 380,000€. To estimate the costs per unit 

flow we calculate the distance (km.) between each pair of 

nodes of our network and make the product with the unit 

transport cost per km. of a container transport vehicle 

(1.152€/km according to Ministerio de Fomento, 2012). 

 

Figure 1. Current depots (1-8, circled) and potential new 

depots (9-19). 

4.1 Impact estimation using Fuzzy AHP 

Obtaining data about the impact generated by the transport 

operations of a depot and by its setting up and maintenance is 

a difficult task. We have asked three logistic experts about 

five externalities produced by the transport operations, 

namely atmospheric (a.p.), visual (v.p.) and noise pollution 

(n.p.), traffic congestion (t.c.) and accidentability (acc.). Each 

expert was asked to define a Fuzzy AHP matrix comparing 

the five effects, and its consistence was checked. The three 

final matrices are: 
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The consensus matrix Mc is calculated using the geometric 

mean of each component of the fuzzy numbers (lower, 

medium, upper) of the values provided by each expert. 

C

1,1,1 0.14,0.16,0.2 1.82,3.04,4.16 1.29,1.59,1.91 0.5,0.6,0.73

5.01,6.07,7.11 1,1,1 7.27,8.28,8.65 6.07,7.11,7.86 4,5.13,6

M 0.24,0.33,0.55 0.12,0.12,0.14 1,1,1 0.42,0.57,0.83 0.35,0.4
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 
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This matrix is transformed to a crisp matrix to check its 

consistence using the method proposed by Kwong and Bai 

(2003) in which each element of the matrix is calculated as: 

ij ij ij ijm (m 4m m ) / 6    . Once the consistence was 

checked we used the geometric mean to obtain the weights 

for each alternative and determine the environmental impact 

per transported unit at each depot. To assess the 

environmental impacts of each depot we used the “ratings 

mode” considering three categories (low, medium, high) for 

each criterion. These ratings and the resulting relative 

impacts (r.i.) of each potential location are shown in Table 2. 

Locat. 
a.p. 

(0.117) 
n.p. 

(0.597) 
v.p. 

(0.055) 
t.c. 

(0.085) 
acc. 

(0.146) 
r.i. 

D 1 M 0.464 M 0.333 M 0.464 A 1 M 0.333 0.443 

D 2 L 0.215 M 0.333 M 0.464 L 0.215 L 0.111 0.276 

D 3 H 1 H 1 H 1 H 1 H 1 1 

D 4 H 1 H 1 H 1 H 1 H 1 1 

D 5 H 1 H 1 H 1 H 1 H 1 1 

D 6 M 0.464 M 0.333 L 0.215 L 0.215 M 0.333 0.327 

D 7 H 1 H 1 H 1 H 1 M 0.333 0.893 

D 8 H 1 H 1 H 1 H 1 M 0.333 0.893 

D 9 M 0.464 M 0.333 M 0.464 H 1 M 0.333 0.443 

D 10 M 0.464 M 0.333 M 0.464 H 1 M 0.333 0.443 

D 11 M 0.464 M 0.333 L 0.215 H 1 M 0.333 0.428 

D 12 H 1 H 1 H 1 H 1 H 1 1 

D 13 M 0.464 M 0.333 M 0.464 H 1 M 0.333 0.443 

D 14 M 0.464 M 0.333 L 0.215 M 0.464 M 0.333 0.359 

D 15 M 0.464 M 0.333 M 0.464 L 0.215 M 0.333 0.342 

D 16 M 0.464 M 0.333 M 0.464 M 0.464 M 0.333 0.374 

D 17 H 1 H 1 H 1 H 1 H 1 1 

D 18 M 0.464 M 0.333 L 0.215 M 0.464 M 0.333 0.359 

D 19 M 0.464 M 0.333 M 0.464 M 0.464 M 0.333 0.374 

Table 2. Impact per flow unit at each depot 

Also, we consider three criteria in relation to the impact 

generated by the depot itself, namely its setting up (s.u.), 

visual impact (v.i.) and operations pollution (o.p.). The 

corresponding ratings and resulting relative impacts of each 

potential location are shown in Table 3. 

Locat. 
s. u. 

(0.2) 

v.i. 

(0.08) 

o.c. 

(0.72) 
r.i. 

D 1 H 0.215 M 0.464 M 0.333 0.320 

D 2 U 1 L 0.215 L 0.111 0.297 

D 3 U 1 H 1 H 1 1 

D 4 H 0.215 M 0.464 H 1 0.800 

D 5 M 0.464 H 1 H 1 0.893 

D 6 M 0.464 M 0.464 M 0.333 0.370 

D 7 M 0.464 H 1 H 1 0.893 

D 8 M 0.464 H 1 H 1 0.893 

D 9 M 0.464 M 0.464 M 0.333 0.370 

D 10 H 1 M 0.464 M 0.333 0.477 

D 11 H 1 L 0.215 M 0.333 0.457 

D 12 M 0.464 H 1 H 1 0.893 

D 13 L 0.215 H 1 M 0.333 0.363 

D 14 H 1 L 0.215 M 0.333 0.457 

D 15 H 1 L 0.215 M 0.333 0.457 

D 16 H 1 L 0.215 M 0.333 0.457 

D 17 M 0.464 H 1 H 1 0.893 

D 18 H 1 M 0.464 M 0.333 0.477 

D 19 M 0.464 L 0.215 M 0.333 0.350 

Table 3. Fixed impact per stored unit at each depot 

4.2 Optimization results 

The first step is to obtain the extreme values for the two 

objective functions in our model. The minimum and 

maximum cost values obtained (in thousand euros) are 


1z =1212.98 and 


1z =9614.51 respectively. For the 

environmental impact objective function, the minimum and 

maximum values are 


2z =21342.68 and 


2z =94150.98. 

With these extreme values the FMO model, changing in the 

objective function and constraints every λi for a unique λ, was 

solved obtaining λ*= 0.973. The cost value for this solution is 

1442.668 thousand euros and its environmental impact is 

23333.17. This solution opens seven depots, three of them 

corresponding to currently opened depots (1, 6, 7) and the 

other four to new ones (9, 13, 15, 18). 

After that, we solve several times the FMO model including 

as a constraint that λi. The first value for  is the λ* value 

we obtained before, that is, initially =0.973. After that  is 

decreased by 0.0005 in each iteration. For λ≤0.9665 the 

solution does not change any more. All the different solutions 

found are shown in Figure 2. 

 

Figure 2. Solutions for model [FMO] 
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We have also solved the problem forcing that the open depots 

are exactly the eight depots actually operating. The resulting 

minimum cost for the current situation is 1769.698 thousand 

euros and its impact is 44355.57. This current solution is 

absolutely dominated by all the solutions we have found. The 

best cost solution we have found in our experiments is about 

18% better than the current one and the best impact solution 

we have found improves about 51% the current configuration 

of opened depots (see Figure 2). 

It can be also noted that depots 6, 9 and 15 are open in every 

solution while depots 3, 4, 5, 8, 10, 12, 16 and 17 are not 

selected for any solution (see Figure 3). 

 

Figure 3. Depots that are never opened (X) and those 

opened in all obtained solutions (  ) 

5. CONCLUSIONS 

In this paper a new bicriteria optimization model is presented 

to determine the best location of empty container depots in a 

hinterland. This model takes into account the total operation 

costs as well as the total environmental impact generated by 

the heavy transport operations in and out of the depots 

network as well as by the depots setting up and maintenance. 

Due to the uncertainty of the data needed fuzzy 

multiobjective optimization was used to solve the problem. 

Fuzzy-AHP was also used to obtain the environmental impact 

data. The results in the hinterland of Valencia have provided 

a set of potential solutions that are clearly much better than 

the current situation for both objective functions. 
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